Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.360
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mol Biol ; 436(10): 168569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604527

RESUMO

Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.


Assuntos
Proteínas de Ligação ao GTP , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Humanos , Transglutaminases/metabolismo , Transglutaminases/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Cells ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667282

RESUMO

Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.


Assuntos
Proteínas de Ligação ao GTP , Neoplasias do Sistema Nervoso , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Humanos , Transglutaminases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neoplasias do Sistema Nervoso/patologia , Neoplasias do Sistema Nervoso/enzimologia , Neoplasias do Sistema Nervoso/metabolismo , Animais
3.
Front Immunol ; 15: 1371706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650935

RESUMO

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Assuntos
Fibroblastos , Proteínas de Ligação ao GTP , Hipertensão Pulmonar , Interleucina-6 , Pulmão , Camundongos Transgênicos , Proteína 2 Glutamina gama-Glutamiltransferase , Piruvato Quinase , Transglutaminases , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/etiologia , Interleucina-6/metabolismo , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Transglutaminases/metabolismo , Transglutaminases/genética
4.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672511

RESUMO

TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.


Assuntos
Alquilantes , Domínio Catalítico , Proteínas de Ligação ao GTP , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Transglutaminases/química , Transglutaminases/metabolismo , Transglutaminases/antagonistas & inibidores , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Alquilantes/química , Alquilantes/farmacologia , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Conformação Proteica , Cinética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
5.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578826

RESUMO

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Assuntos
Linfócitos B , Doença Celíaca , Proteínas de Ligação ao GTP , Imunoglobulina A , Plasmócitos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Doença Celíaca/imunologia , Doença Celíaca/patologia , Humanos , Transglutaminases/imunologia , Transglutaminases/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina A/sangue , Linfócitos B/imunologia , Linfócitos B/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/sangue , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Glutens/imunologia
6.
ACS Sens ; 9(3): 1321-1330, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38471126

RESUMO

A groundbreaking demonstration of the utilization of the metal-organic framework MIL-101(Fe) as an exceptionally perceptive visual label in colorimetric lateral flow assays (LFA) is described. This pioneering approach enables the precise identification of transglutaminase 2 (TGM2), a recognized biomarker for chronic kidney disease (CKD), in urine specimens, which offers a remarkably sensitive naked-eye detection mechanism. The surface of MIL-101(Fe) was modified with oxalyl chloride, adipoyl chloride, and poly(acrylic) acid (PAA); these not only improved the labeling material stability in a complex matrix but also achieved a systematic control in the detection limit of the TGM2 concentration using our LFA platform. The advanced LFA with the MIL-101(Fe)-PAA label can detect TGM2 concentrations down to 0.012, 0.009, and 0.010 nM in Tris-HCl buffer, urine, and desalted urine, respectively, which are approximately 55-fold lower than those for a conventional AuNP-based LFAs. Aside from rapid TGM2 detection (i.e., within 20 min), the performance of the MIL-101(Fe)-PAA-based LFA on reproducibility [coefficients of variation (CV) < 2.9%] and recovery (95.9-103.2%) along with storage stability within 25 days of observation (CV < 6.0%) shows an acceptable parameter range for quantitative analysis. A sophisticated sensing method grounded in machine learning principles was also developed, specifically aimed at precisely deducing the TGM2 concentration by analyzing immunoreaction sites. More importantly, our developed LFA offers potential for clinical measurement of TGM2 concentration in normal human urine and CKD patients' samples.


Assuntos
Aprendizado de Máquina , Estruturas Metalorgânicas , Proteína 2 Glutamina gama-Glutamiltransferase , Insuficiência Renal Crônica , Humanos , Colorimetria/métodos , Ferro , Proteína 2 Glutamina gama-Glutamiltransferase/urina , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/urina , Reprodutibilidade dos Testes
7.
Clin Chim Acta ; 557: 117891, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555049

RESUMO

BACKGROUND: Laboratory testing for celiac disease in pediatric patients integrates serology, genetic susceptibility and duodenal biopsy examination. The 2023 American College of Gastroenterology guidelines recommend a biopsy-free approach in pediatric patients utilizing tissue transglutaminase antibody titers >10 times upper limit of normal and subsequent endomysial antibody seropositivity as sufficient for diagnosis. The objective of this study is to assess the diagnostic accuracy of biopsy-free approach at our pediatric hospital. METHODS: We conducted a retrospective study involving pediatric patients who underwent biopsy for diagnostic confirmation of celiac disease between May 2019 and May 2023. For these patients, the tissue transglutaminase and endomysial antibody test results were retrieved and performance of biopsy-free approach was assessed using the duodenal histology as the gold standard for celiac disease diagnosis. RESULTS: Tissue transglutaminase antibody titers >10 times upper limit of normal alone demonstrated a positive predictive value of 99% for identifying celiac disease in children. Although endomysial antibody testing is underutilized at our center, its inclusion further improved the predictability to 100 %. CONCLUSION: Positive predictive value of tissue transglutaminase antibody titers >10 times upper limit of normal is sufficiently high for celiac disease diagnosis in children and may allow for deferral of duodenal biopsy at diagnosis.


Assuntos
Doença Celíaca , Proteína 2 Glutamina gama-Glutamiltransferase , Criança , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/patologia , Estudos Retrospectivos , Transglutaminases , Proteínas de Ligação ao GTP , Imunoglobulina A , Biópsia , Autoanticorpos
8.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474044

RESUMO

Transglutaminase type 2 (TG2) is the most ubiquitously expressed and well characterized member of the transglutaminase family. It is a ubiquitous multifunctional enzyme implicated in the regulation of several cellular pathways that support the survival, death, and general homeostasis of eukaryotic cells. Due to its multiple localizations both inside and outside the cell, TG2 participates in the regulation of many crucial intracellular signaling cascades in a tissue- and cell-specific manner, making this enzyme an important player in disease development and progression. Moreover, TG2 is capable of modulating the tumor microenvironment, a process of dynamic tissue remodeling and biomechanical events, resulting in changes which influence tumor initiation, growth, and metastasis. Even if generally related to the Ca2+-dependent post-translational modification of proteins, a number of different biological functions have been ascribed to TG2, like those of a peptide isomerase, protein kinase, guanine nucleotide binder, and cytosolic-nuclear translocator. With respect to cancer, TG2's role is controversial and highly debated; it has been described both as an anti- and pro-apoptotic factor and is linked to all the processes of tumorigenesis. However, numerous pieces of evidence support a tissue-specific role of TG2 so that it can assume both oncogenic and tumor-suppressive roles.


Assuntos
Neoplasias , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Transdução de Sinais , Microambiente Tumoral
9.
Br J Cancer ; 130(9): 1505-1516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454166

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a 5-year survival rate of 12%. The abundant mesenchyme is partly responsible for the malignancy. The antifibrotic therapies have gained attention in recent research. However, the role of pirfenidone, an FDA-approved drug for idiopathic pulmonary fibrosis, remains unclear in PDAC. METHODS: Data from RNA-seq of patient-derived xenograft (PDX) models treated with pirfenidone were integrated using bioinformatics tools to identify the target of cell types and genes. Using confocal microscopy, qRT-PCR and western blotting, we validated the signalling pathway in tumour cells to regulate the cytokine secretion. Further cocultured system demonstrated the interplay to regulate stroma fibrosis. Finally, mouse models demonstrated the potential of pirfenidone in PDAC. RESULTS: Pirfenidone can remodulate multiple biological pathways, and exerts an antifibrotic effect through inhibiting the secretion of PDGF-bb from tumour cells by downregulating the TGM2/NF-kB/PDGFB pathway. Thus, leading to a subsequent reduction in collagen X and fibronectin secreted by CAFs. Moreover, the mice orthotopic pancreatic tumour models demonstrated the antifibrotic effect and potential to sensitise gemcitabine. CONCLUSIONS: Pirfenidone may alter the pancreatic milieu and alleviate fibrosis through the regulation of tumour-stroma interactions via the TGM2/NF-kB/PDGFB signalling pathway, suggesting potential therapeutic benefits in PDAC management.


Assuntos
Carcinoma Ductal Pancreático , Fibrose , Neoplasias Pancreáticas , Piridonas , Piridonas/farmacologia , Piridonas/uso terapêutico , Humanos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Fibrose/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Gencitabina , Proteína 2 Glutamina gama-Glutamiltransferase , Microambiente Tumoral/efeitos dos fármacos , NF-kappa B/metabolismo
10.
J Pediatr Gastroenterol Nutr ; 78(5): 1143-1148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477348

RESUMO

OBJECTIVES: Autoantibodies against tissue transglutaminase (tTG) are serological markers of celiac disease. The aim was to study the applicability of human leukocyte antigen (HLA)-genotyping and tTG autoantibodies in the screening of celiac disease in a longitudinal birth cohort followed to age 15 years. METHODS: Included were 13,860 HLA-DQ-genotyped children at birth and previously invited to a screening at age 3 and 9 years, respectively. HLA-DQB1*02 and/or DQB1*03:02 (HLA-risk) children were compared with non-HLA-DQB1*02 and non-DQB1*03:02 (HLA-nonrisk) children. The present study reinvited 12,948/13,860 (93.4%) children at age 15 years of whom 1056/2374 (44.5%) participated in screening at both age 3 and 9 years. Both immunoglobulin A (IgA) and G (IgG) autoantibodies against tTG were analyzed separately in radiobinding assays. Persistently tTG autoantibody-positive children were examined with intestinal biopsy to confirm the diagnosis of celiac disease. RESULTS: At age 3 years, celiac disease was diagnosed in 56/1635 (3.4%) HLA-risk children compared with 0/1824 HLA-nonrisk children (p < 0.001). By age 9 years, celiac disease was diagnosed in 72/1910 (3.8%) HLA-risk children compared with 0/2167 HLA-nonrisk children (p < 0.001). Screening at age 15 years detected 14/1071 (1.3%) HLA-risk children positive for IgA-tTG and/or IgG-tTG of whom 12/1071 (1.1%) remained persistently positive. Among those, 10/1071 (0.9%, 95% confidence interval: 0.4%-1.7%) HLA-risk children were diagnosed with celiac disease compared with 0/1303 HLA-nonrisk children (p < 0.001) and 5/491 (1.0%) were negative in screenings at both 3 and 9 years of age. CONCLUSIONS: Screening for celiac disease needs to be performed at multiple timepoints to detect all cases but can be restricted to children at HLA-risk.


Assuntos
Autoanticorpos , Doença Celíaca , Proteínas de Ligação ao GTP , Imunoglobulina A , Transglutaminases , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Doença Celíaca/genética , Criança , Pré-Escolar , Transglutaminases/imunologia , Estudos Longitudinais , Autoanticorpos/sangue , Adolescente , Feminino , Masculino , Imunoglobulina A/sangue , Proteínas de Ligação ao GTP/imunologia , Imunoglobulina G/sangue , Proteína 2 Glutamina gama-Glutamiltransferase , Antígenos HLA-DQ/genética , Programas de Rastreamento/métodos , Genótipo , Cadeias beta de HLA-DQ/genética , Fatores de Risco , Predisposição Genética para Doença
11.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397010

RESUMO

A wound healing model was developed to elucidate the role of mesenchymal-matrix-associated transglutaminase 2 (TG2) in keratinocyte re-epithelialisation. TG2 drives keratinocyte migratory responses by activation of disintegrin and metalloproteinase 17 (ADAM17). We demonstrate that epidermal growth factor (EGF) receptor ligand shedding leads to EGFR-transactivation and subsequent rapid keratinocyte migration on TG2-positive ECM. In contrast, keratinocyte migration was impaired in TG2 null conditions. We show that keratinocytes express the adhesion G-protein-coupled receptor, ADGRG1 (GPR56), which has been proposed as a TG2 receptor. Using ADAM17 activation as a readout and luciferase reporter assays, we demonstrate that TG2 activates GPR56. GPR56 activation by TG2 reached the same level as observed with an agonistic N-GPR56 antibody. The N-terminal GPR56 domain is required for TG2-regulated signalling response, as the constitutively active C-GPR56 receptor was not activated by TG2. Signalling required the C-terminal TG2 ß-barrel domains and involved RhoA-associated protein kinase (ROCK) and ADAM17 activation, which was blocked by specific inhibitors. Cell surface binding of TG2 to the N-terminal GPR56 domain is rapid and is associated with TG2 and GPR56 endocytosis. TG2 and GPR56 represent a ligand receptor pair causing RhoA and EGFR transactivation. Furthermore, we determined a binding constant for the interaction of human TG2 with N-GPR56 and show for the first time that only the calcium-enabled "open" TG2 conformation associates with N-GPR56.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Receptores Acoplados a Proteínas G , Humanos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Receptores ErbB/metabolismo , Ligantes , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
12.
Gastroenterology ; 166(4): 620-630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176661

RESUMO

BACKGROUND & AIMS: Current international guidelines recommend duodenal biopsies to confirm the diagnosis of celiac disease in adult patients. However, growing evidence suggests that immunoglobulin A (IgA) anti-tissue transglutaminase (tTg) antibody levels ≥10 times the upper limit of normal (ULN) can accurately predict celiac disease, eliminating the need for biopsy. We performed a systematic review and meta-analysis to evaluate the accuracy of the no-biopsy approach to confirm the diagnosis of celiac disease in adults. METHODS: We systematically searched MEDLINE, EMBASE, Cochrane Library, and Web of Science from January 1998 to October 2023 for studies reporting the sensitivity and specificity of IgA-tTG ≥10×ULN against duodenal biopsies (Marsh grade ≥2) in adults with suspected celiac disease. We used a bivariate random effects model to calculate the summary estimates of sensitivity, specificity, and positive and negative likelihood ratios. The positive and negative likelihood ratios were used to calculate the positive predictive value of the no-biopsy approach across different pretest probabilities of celiac disease. The methodological quality of the included studies was evaluated using the QUADAS-2 tool. This study was registered with PROSPERO, number CRD42023398812. RESULTS: A total of 18 studies comprising 12,103 participants from 15 countries were included. The pooled prevalence of biopsy-proven celiac disease in the included studies was 62% (95% confidence interval [CI], 40%-83%). The proportion of patients with IgA-tTG ≥10×ULN was 32% (95% CI, 24%-40%). The summary sensitivity of IgA-tTG ≥10×ULN was 51% (95% CI, 42%-60%), and the summary specificity was 100% (95% CI, 98%-100%). The area under the summary receiver operating characteristic curve was 0.83 (95% CI, 0.77 - 0.89). The positive predictive value of the no-biopsy approach to identify patients with celiac disease was 65%, 88%, 95%, and 99% if celiac disease prevalence was 1%, 4%, 10%, and 40%, respectively. Between-study heterogeneity was moderate (I2 =30.3%), and additional sensitivity analyses did not significantly alter our findings. Only 1 study had a low risk of bias across all domains. CONCLUSION: The results of this meta-analysis suggest that selected adult patients with IgA-tTG ≥10×ULN and a moderate to high pretest probability of celiac disease could be diagnosed without undergoing invasive endoscopy and duodenal biopsy.


Assuntos
Doença Celíaca , Adulto , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/epidemiologia , Transglutaminases , Proteína 2 Glutamina gama-Glutamiltransferase , Imunoglobulina A , Proteínas de Ligação ao GTP , Biópsia , Sensibilidade e Especificidade , Autoanticorpos
13.
Scand J Gastroenterol ; 59(4): 419-424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164975

RESUMO

OBJECTIVES: It has been suggested that celiac disease could be diagnosed non-invasively in adults with transglutaminase antibody (TGA) levels >10x upper limit of normal (ULN). It is, however, unclear if high values signify more advanced disease and higher risk of co-morbidities. We investigated the association between the TGA levels, clinical characteristics and non-celiac endoscopic findings. METHODS: Medical data on 450 celiac disease patients at diagnosis were collected. They were further divided into those with high positive (>10x ULN, n = 164), moderately positive (1-10x ULN, n = 219), and negative (n = 67) TGA. RESULTS: Median age of patients was 50 years and 60% were women. Patients with negative TGA were older (median age 58 vs. 51 vs. 46 years respectively, p = 0.002) and had more often weight loss (27% vs. 10% vs. 9%, p < 0.001) and abdominal pain or dyspepsia (40% vs 27% vs. 22%, p = 0.017) than did those with moderately positive/high TGA. The groups did not differ in sex, BMI, or other symptoms. Major endoscopic findings included one esophageal adenocarcinoma presenting with dysphagia, six esophagitis, three gastric ulcers, and 39 H. Pylori or other active gastritis. High, moderately positive or negative TGA levels were not associated with these findings in crude or age-adjusted analyses. CONCLUSIONS: Presentation was similar in patients with moderate or high levels of TGA, whereas patients with negative TGA were different. The level of TGA was not associated with incidental endoscopic findings and the only malignancy presented with an alarm symptom atypical to celiac disease.


Assuntos
Doença Celíaca , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Proteína 2 Glutamina gama-Glutamiltransferase , Biópsia , Transglutaminases , Comorbidade , Autoanticorpos , Imunoglobulina A
14.
J Gastroenterol Hepatol ; 39(3): 489-495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095156

RESUMO

BACKGROUND AND AIM: While European Society of Pediatric Gastroenterology Hepatology and Nutrition advocates a no-biopsy pathway for the diagnosis of celiac disease (CeD) in children if IgA anti-tissue transglutaminase antibody (anti-tTG ab) titer is ≥10-fold upper limit of normal (ULN) and have a positive IgA anti-endomysial antibody (EMA); the data for anti-tTG Ab titer-based diagnosis of CeD in adults is still emerging. We planned to validate if IgA anti-tTG Ab titer ≥10-fold predicts villous abnormalities of modified Marsh grade ≥2 in Asian adult patients with CeD. METHODS: We recruited 937 adult patients with positive anti-tTG Ab from two databases, including AIIMS Celiac Clinic and Indian National Biorepository. The diagnosis of definite CeD was made on the basis of a positive anti-tTG Ab and the presence of villous abnormalities of modified Marsh grade ≥2. RESULTS: Of 937 adult patients with positive anti-tTG Ab, 889 (91.2%) showed villous abnormalities of modified Marsh grade ≥2. Only 47.6% of 889 adults with CeD had anti- tTG Ab titers of ≥10-fold. The positive predictive value (PPV) and specificity of anti tTG Ab titer ≥10-fold for predicting modified Marsh grade ≥2 were 99.8% and 98%, respectively. At anti-tTG Ab titer ≥11-fold, specificity and PPV were 100% for predicting villous abnormalities of modified Marsh grade ≥2. CONCLUSIONS: Approximately 50% of adults with CeD may benefit from the no biopsy pathway, reducing the health burden and risks of gastroscopy/anesthesia.


Assuntos
Doença Celíaca , Adulto , Humanos , Autoanticorpos , Doença Celíaca/patologia , Proteínas de Ligação ao GTP , Imunoglobulina A , Proteína 2 Glutamina gama-Glutamiltransferase , Estudos Retrospectivos , Sensibilidade e Especificidade , Transglutaminases
15.
Bioorg Chem ; 143: 107061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154386

RESUMO

Overexpression of transglutaminase 2 (TGase 2; TG2) has been implicated in the progression of renal cell carcinoma (RCC) through the inactivation of p53 by forming a protein complex. Because most p53 in RCC has no mutations, apoptosis can be increased by inhibiting the binding between TG2 and p53 to increase the stability of p53. In the present study, a novel TG2 inhibitor was discovered by investigating the structure of 1H-benzo[d]imidazole-4,7-dione as a simpler chemotype based on the amino-1,4-benzoquinone moiety of streptonigrin, a previously reported inhibitor. Through structure-activity relationship (SAR) studies, compound 8j (MD102) was discovered as a potent TG2 inhibitor with an IC50 value of 0.35 µM, p53 stabilization effect and anticancer effects in the ACHN and Caki-1 RCC cell lines with sulforhodamine B (SRB) GI50 values of 2.15 µM and 1.98 µM, respectively. The binding property of compound 8j (MD102) with TG2 was confirmed to be reversible in a competitive enzyme assay, and the binding interaction was expected to be formed at the ß-sandwich domain, a p53 binding site, in the SPR binding assay with mutant proteins. The mode of binding of compound 8j (MD102) to the ß-sandwich domain of TG2 was analyzed by molecular docking using the crystal structure of the active conformation of human TG2. Compound 8j (MD102) induced a decrease in the downstream signaling of p-AKT and p-mTOR through the stabilization of p53 by TG2 inhibition, resulting in tumor cell apoptosis. In a xenograft animal model using ACHN cancer cells, oral administration and intraperitoneal injection of compound 8j (MD102) showed an inhibitory effect on tumor growth, confirming increased levels of p53 and decreased levels of Ki-67 in tumor tissues through immunohistochemical (IHC) tissue staining. These results indicated that the inhibition of TG2 by compound 8j (MD102) could enhance p53 stabilization, thereby ultimately showing anticancer effects in RCC. Compound 8j (MD102), a novel TG2 inhibitor, can be further applied for the development of an anticancer candidate drug targeting RCC.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Imidazóis/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Simulação de Acoplamento Molecular , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
16.
Matrix Biol ; 125: 113-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135164

RESUMO

Transglutaminase 2 (TG2) plays a vital role in stabilizing extracellular matrix (ECM) proteins through enzymatic crosslinking during tissue growth, repair, and inflammation. TG2 also binds non-covalently to fibronectin (FN), an essential component of the ECM, facilitating cell adhesion, migration, proliferation, and survival. However, the interaction between TG2 and fibrillar FN remains poorly understood, as most studies have focused on soluble or surface-adsorbed FN or FN fragments, which differ in their conformations from insoluble FN fibers. Using a well-established in vitro FN fiber stretch assay, we discovered that the binding of a crosslinking enzyme to ECM fibers is mechano-regulated. TG2 binding to FN is tuned by the mechanical tension of FN fibers, whereby TG2 predominantly co-localizes to low-tension FN fibers, while fiber stretching reduces their affinity for TG2. This mechano-regulated binding relies on the proximity between the N-terminal ß-sandwich and C-terminal ß-barrels of TG2. Crosslinking mass spectrometry (XL-MS) revealed a novel TG2-FN synergy site within TG2's C-terminal ß-barrels that interacts with FN regions located outside of the canonical gelatin binding domain, specifically FNI2 and FNIII14-15. Combining XL-MS distance restraints with molecular docking revealed the mechano-regulated binding mechanism between TG2 and modules FNI7-9 by which mechanical forces regulate TG2-FN interactions. This highlights a previously unrecognized role of TG2 as a tension sensor for FN fibers. This novel interaction mechanism has significant implications in physiology and mechanobiology, including how forces regulate cell adhesion, spreading, migration, phenotype modulation, depending on the tensional state of ECM fibers. Data are available via ProteomeXchange with identifier PXD043976.


Assuntos
Fibronectinas , Proteína 2 Glutamina gama-Glutamiltransferase , Fibronectinas/metabolismo , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas da Matriz Extracelular/metabolismo
17.
Immunobiology ; 228(6): 152752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813017

RESUMO

Tissue transglutaminase (TG2) expressed in monocytes and macrophage is known to participate in processes during either early and resolution stages of inflammation. The alternative splicing of tissue transglutaminase gene is a mechanism that increases its functional diversity. Four spliced variants are known with truncated C-terminal domains (TGM2_v2, TGM2_v3, TGM2_v4a, TGM2_v4b) but scarce information is available about its expression in human monocyte and macrophages. We studied the expression of canonical TG2 (TGM2_v1) and its short spliced variants by RT-PCR during differentiation of TPH-1 derived macrophages (dTHP-1) using two protocols (condition I and II) that differ in Phorbol-12-myristate-13-acetate dose and time schedule. The production of TNF-α and IL-1ß in supernatant of dTHP-1, measured by ELISA in supernatants showed higher proinflammatory milieu in condition I. We found that the expression of all mRNA TG2 spliced variants were up-regulated during macrophage differentiation and after IFN-γ treatment of dTHP-1 cells in both conditions. Nevertheless, the relative fold increase or TGM2_v3 in relation with TGM2_v1 was higher only with the condition I. M1/M2-like THP-1 macrophages obtained with IFN-γ/IL-4 treatments showed that the up-regulation of TGM2_v1 induced by IL-4 was higher in relation with any short spliced variants. The qualitative profile of relative contribution of spliced variants in M1/M2-like THP-1 cells showed a trend to higher expression of TGM2_v3 in the inflammatory functional phenotype. Our results contribute to the knowledge about TG2 spliced variants in the biology of monocyte/macrophage cells and show how the differentiation conditions can alter their expression and cell function.


Assuntos
Macrófagos , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Interleucina-4/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fenótipo , Células THP-1/metabolismo
18.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628729

RESUMO

Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.


Assuntos
Neoplasias , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Transglutaminases , Corantes Fluorescentes , Fenótipo
19.
FEBS J ; 290(22): 5411-5433, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597264

RESUMO

Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.


Assuntos
Neoplasias da Mama , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Feminino , Neoplasias da Mama/metabolismo , Células MCF-7 , Apoptose , Metabolômica , Linhagem Celular Tumoral , Transglutaminases/metabolismo
20.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446114

RESUMO

Circulating uremic toxin indoxyl sulfate (IS), endothelial cell (EC) dysfunction, and decreased nitric oxide (NO) bioavailability are found in chronic kidney disease patients. NO nitrosylates/denitrosylates a specific protein's cysteine residue(s), forming S-nitrosothios (SNOs), and the decreased NO bioavailability could interfere with NO-mediated signaling events. We were interested in investigating the underlying mechanism(s) of the reduced NO and how it would regulate the S-nitrosylation of tissue transglutaminase (TG2) and its substrates on glycolytic, redox and inflammatory responses in normal and IS-induced EC injury. TG2, a therapeutic target for fibrosis, has a Ca2+-dependent transamidase (TGase) that is modulated by S-nitrosylation. We found IS increased oxidative stress, reduced NADPH and GSH levels, and uncoupled eNOS to generate NO. Immunoblot analysis demonstrated the upregulation of an angiotensin-converting enzyme (ACE) and significant downregulation of the beneficial ACE2 isoform that could contribute to oxidative stress in IS-induced injury. An in situ TGase assay demonstrated IS-activated TG2/TGase aminylated eNOS, NFkB, IkBα, PKM2, G6PD, GAPDH, and fibronectin (FN), leading to caspases activation. Except for FN, TGase substrates were all differentially S-nitrosylated either with or without IS but were denitrosylated in the presence of a specific, irreversible TG2/TGase inhibitor ZDON, suggesting ZDON-bound TG2 was not effectively transnitrosylating to TG2/TGase substrates. The data suggest novel roles of TG2 in the aminylation of its substrates and could also potentially function as a Cys-to-Cys S-nitrosylase to exert NO's bioactivity to its substrates and modulate glycolysis, redox, and inflammation in normal and IS-induced EC injury.


Assuntos
Indicã , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Células Endoteliais , Estresse Oxidativo , Glicólise , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA